

74ABT161543
74ABTH161543
16-bit latched transceiver with dual enable and master reset (3-State)

Product specification
Supersedes data of 1995 Sep 18 IC23 Data Handbook

PHILIPS

16-bit latched transceiver with dual enable and master reset (3-State)

FEATURES

- Two 8-bit octal transceivers with D-type latch
- Live insertion/extraction permitted
- Power-up 3-State
- Power-up reset
- Multiple V_{CC} and GND pins minimize switching noise
- Back-to-back registers for storage
- Separate controls for data flow in each direction
- 74ABTH161543 incorporates Bus hold data inputs which eliminate the need for external pull-up resistors to hold unused inputs
- Output capability: $+64 \mathrm{~mA} /-32 \mathrm{~mA}$
- Latch-up protection exceeds 500mA per Jedec Std 17
- ESD protection exceeds 2000V per MIL STD 883 Method 3015 and 200V per Machine Model
- Same function as ABT16543 except for additional Master Reset control pins

DESCRIPTION

The 74ABT161543 high-performance BiCMOS device combines low static and dynamic power dissipation with high speed and high output drive.

The 74ABT161543 16-bit registered transceiver contains two sets of D-type latches for temporary storage of data flowing in either direction. Separate Latch Enable (n LEAB, n LEBA) and Output Enable ($\mathrm{nOEAB}, \mathrm{n} \overline{\mathrm{OEBA}}$) inputs are provided for each register to permit independent control of data transfer in either direction. Master reset (MR) clears all registers simultaneously and sets them Low. The outputs are guaranteed to sink 64 mA .

Two options are available, 74ABT161543 which does not have the Bus hold feature and 74ABTH161543 which inorporates the Bus hold feature.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	$\begin{gathered} \text { CONDITIONS } \\ T_{\text {amb }}=25^{\circ} \mathrm{C} ; \text { GND }=0 \mathrm{~V} \end{gathered}$	TYPICAL	UNIT
$\begin{aligned} & \hline \mathrm{tPLH}^{\text {tpHL }} \end{aligned}$	Propagation delay nAx to nBx	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\begin{aligned} & \hline 2.5 \\ & 2.2 \end{aligned}$	ns
$\mathrm{C}_{\text {IN }}$	Input capacitance	$\mathrm{V}_{1}=0 \mathrm{~V}$ or V_{CC}	3	pF
$\mathrm{C}_{1 / \mathrm{O}}$	I/O capacitance	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ or V_{CC}; 3-State	7	pF
ICCz	Quiescent supply current	Outputs disabled; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	500	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CCL }}$		Outputs low; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	9	mA

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE	DRAWING NUMBER
56 -pin plastic SSOP Type III	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	BT161543DL	SOT371-1
56 -pin plastic TSSOP Type II	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	BT161543DGG	SOT364-1

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
56-Pin Plastic SSOP Type III	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	74 ABT161543 DL	BT161543 DL	SOT371-1
56-Pin Plastic TSSOP Type II	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$74 \mathrm{ABT161543} \mathrm{DGG}$	BT161543 DGG	SOT364-1
56-Pin Plastic SSOP Type III	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$74 \mathrm{ABTH161543} \mathrm{DL}$	BH161543 DL	SOT371-1
56-Pin Plastic TSSOP Type II	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	74 ABTH161543 DGG	BH161543 DGG	SOT364-1

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
$\begin{gathered} 5,6,8,9,10,12,13,14 \\ 15,16,17,19,20,21,23,24 \end{gathered}$	$\begin{aligned} & \text { 1A0-1A7, } \\ & 2 A 0-2 A 7 \end{aligned}$	Data inputs/outputs
$52,51,49,48,47,45,44,43$ $42,41,40,38,37,36,34,33$	$\begin{aligned} & 1 \mathrm{B0}-1 \mathrm{B7}, \\ & 2 \mathrm{B0} 0-2 \mathrm{~B} 7 \end{aligned}$	Data inputs/outputs
$\begin{aligned} & 1,56 \\ & 28,29 \end{aligned}$	$\begin{aligned} & 1 \overline{\mathrm{OEAB}, 1 \mathrm{OEBA},} \\ & 2 \mathrm{OEAB}, 2 \mathrm{OEBA} \end{aligned}$	A to B / B to A Output Enable inputs (active-Low)
$\begin{gathered} 3,54 \\ 26,31 \end{gathered}$	1EAB, 1EBA, 2EAB, 2EBA	A to B/B to A Enable inputs (active-Low)
$\begin{aligned} & \hline 2,55 \\ & 27,30 \end{aligned}$	1LEAB, 1LEBA,	A to B/B to A Latch Enable inputs (active-Low)
4, 25	$\overline{\text { MRab, MRba }}$	Master reset
11, 18, 32, 39, 46, 53	GND	Ground (0V)
7, 22, 35, 50	V_{CC}	Positive supply voltage

16-bit latched transceiver with dual enable

LOGIC SYMBOL (IEEE/IEC)

PIN CONFIGURATION

LOGIC SYMBOL

FUNCTIONAL DESCRIPTION

The 74ABT161543 contains two sets of eight D-type latches, with separate control pins for each set. Using data flow from A to B as an example, when the A-to-B Enable ($n E A B$) input and the A-to-B Latch Enable (n LEAB) input are Low the A-to-B path is transparent.
A subsequent Low-to-High transition of the $n[E A B$ signal puts the A data into the latches where it is stored and the B outputs no longer change with the A inputs. With EAB and nOEAB both Low, the 3 -State B output buffers are active and display the data present at the outputs of the A latches.

Control of data flow from B to A is similar, but using the $n E B A$, nLEBA, and nOEBA inputs.

FUNCTION TABLE

INPUTS					OUTPUTS	STATUS
nరEXX	nMRXX	nEXX	nLEXX	nAx or nBx	nBx or nAx	
L	L	L	X	X	L	Clear
H	X	X	X	X	Z	Disabled
X	X	H	X	X	Z	Disabled
L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	\uparrow	$\begin{aligned} & \bar{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{h} \\ & \mathrm{l} \end{aligned}$	Z	Disabled + Latch
L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	\uparrow	$\begin{aligned} & \mathrm{h} \\ & \mathrm{l} \end{aligned}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$	Latch + Display
$\begin{aligned} & \bar{L} \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \bar{L} \\ & \mathrm{~L} \end{aligned}$	$\stackrel{H}{\mathrm{H}}$	$\underset{\mathrm{L}}{\mathrm{H}}$	Transparent
L	H	L	H	X	NC	Hold

[^0]16-bit latched transceiver with dual enable

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
$\mathrm{V}_{\text {CC }}$	DC supply voltage		-0.5 to +7.0	V
I_{IK}	DC input diode current	$\mathrm{V}_{\mathrm{I}}<0$	-18	mA
$\mathrm{~V}_{\mathrm{I}}$	DC input voltage ${ }^{3}$		-1.2 to +7.0	V
I_{OK}	DC output diode current	$\mathrm{V}_{\mathrm{O}}<0$	-50	mA
$\mathrm{~V}_{\text {OUT }}$	DC output voltage ${ }^{3}$	output in Off or High state	-0.5 to +5.5	V
$\mathrm{I}_{\text {OUT }}$	DC output current	output in Low state	128	mA
	Storage temperature range	output in High state	-64	mA

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed $150^{\circ} \mathrm{C}$.
3. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

16-bit latched transceiver with dual enable and master reset (3-State)

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS		UNIT
		Min	Max	
V_{CC}	DC supply voltage	4.5	5.5	V
$\mathrm{~V}_{\mathrm{I}}$	Input voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IH}	High-level input voltage	2.0		V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level Input voltage		0.8	V
I_{OH}	High-level output current		-32	mA
I_{OL}	Low-level output current		64	mA
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input transition rise or fall rate	0	10	$\mathrm{~ns} / \mathrm{V}$
$\mathrm{T}_{\mathrm{amb}}$	Operating free-air temperature range	-40	+85	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS		LIMITS					UNIT
				$\mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		
				MIN	TYP	MAX	MIN	MAX	
V_{IK}	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{l}_{\mathrm{IK}}=-18 \mathrm{~mA}$				-1.2		-1.2	V
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}^{\text {I }}$	V_{IH}	2.5	3.0		2.5		V
		$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=$	$\mathrm{V}_{1 \mathrm{H}}$	3.0	3.6		3.0		V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=$	V V_{IH}	2.0	2.7		2.0		V
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=$	V_{IH}		0.36	0.55		0.55	V
$\mathrm{V}_{\mathrm{RST}}$	Power-up output voltage ${ }^{3}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GN}$	V_{Cc}		0.13	0.55		0.55	V
1	Input leakage current	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or 5.5 V	Control pins		± 0.01	± 1.0		± 1.0	$\mu \mathrm{A}$
Imold	Bus Hold current A or B Ports ${ }^{5}$ 74ABTH161543	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=0.8 \mathrm{~V}$		35			35		$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=2.0 \mathrm{~V}$		-75			-75		
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=0$ to 5.5 V		± 800					
IOFF	Power-off leakage current	$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}$ or $\mathrm{V}_{1} \leq 4.5 \mathrm{~V}$			± 1.0	± 100		± 100	$\mu \mathrm{A}$
IPU/PD	Power-up/down 3-State output current ${ }^{4}$	$\begin{aligned} & \begin{array}{l} \mathrm{V}_{\mathrm{CC}}=2.1 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0.0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{OE}}=\text { Don't care } \end{array} \end{aligned}$			± 1.0	± 50		± 50	$\mu \mathrm{A}$
$I_{\text {IH }}+I_{\text {OZH }}$	3-State output High current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}			1.0	50		50	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}+\mathrm{I}_{\text {OZL }}$	3-State output Low current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IL }}$ or V_{IH}			-1.0	-50		-50	$\mu \mathrm{A}$
ICEX	Output High leakage current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}			1.0	50		50	$\mu \mathrm{A}$
Io	Output current ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-100	-200	-50	-200	mA
$\mathrm{I}_{\mathrm{CCH}}$	Quiescent supply current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; Outputs High, $\mathrm{V}_{\mathrm{I}}=$ GND or V_{CC}			0.50	1.5		1.5	mA
$\mathrm{I}_{\text {CCL }}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; Outputs Low, $\mathrm{V}_{\mathrm{I}}=$ GND or V_{CC}			9	19		19	mA
I ccz		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text {; Outputs 3-State; } \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} \end{aligned}$			0.50	1.5		1.5	mA
$\Delta_{\text {l }}$	Additional supply current per input pin ${ }^{2}$ 74ABT161543	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; one input at 3.4 V , other inputs at V_{CC} or GND			5.0	100		100	$\mu \mathrm{A}$
$\Delta_{\text {l }}$	Additional supply current per input pin ${ }^{2}$ 74ABTH161543	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$; one input at 3.4 V , other inputs at V_{CC} or GND			0.20	1		1	mA

NOTES:

1. Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
2. This is the increase in supply current for each input at 3.4 V .
3. For valid test results, data must not be loaded into the flip-flops (or latches) after applying the power.
4. This parameter is valid for any $\mathrm{V}_{C C}$ between 0 V and 2.1 V , with a transition time of up to 10 msec . From $\mathrm{V}_{\mathrm{CC}}=2.1 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ a transition time of up to $100 \mu \mathrm{sec}$ is permitted.
5. This is the bus hold overdrive current required to force the input to the opposite logic state.

AC CHARACTERISTICS

$\mathrm{GND}=0 \mathrm{~V}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$

SYMBOL	PARAMETER	WAVEFORM	LIMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40 \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{gathered}$		
			MIN	TYP	MAX	MIN	MAX	
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation delay $n A x$ to $n B x, n B x$ to $n A x$	2	$\begin{aligned} & 1.2 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 2.9 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.9 \\ & 3.5 \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation delay LEBA to $n A x$, LEAB to $n B x$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 4.1 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 4.1 \end{aligned}$	ns
$t_{\text {PHL }}$	MRba to nAx, MRab to nBx	6	1.2	2.6	3.4	1.2	4.2	ns
$\begin{aligned} & \text { tpzH } \\ & \text { tpzL } \end{aligned}$	Output enable time OEBA to $n A x$, OEAB to nBx	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.6 \end{aligned}$	ns
$\begin{aligned} & \text { tpHz } \\ & \text { tpLZ } \end{aligned}$	Output disable time OEBA to $n A x$, $\overline{O E A B}$ to $n B x$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 4.0 \end{aligned}$	ns
$\begin{aligned} & \text { tpzH } \\ & \text { tpzL } \end{aligned}$	Output enable time EBA to $n A x, E A B$ to $n B x$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 5.6 \\ & 5.7 \end{aligned}$	ns
$\begin{aligned} & \text { tphz } \\ & \text { tpLZ } \end{aligned}$	Output disable time EBA to $n A x, E A B$ to $n B x$	$\begin{aligned} & 4 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.3 \end{aligned}$	$\begin{aligned} & \hline 3.5 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 4.0 \end{aligned}$	ns

AC SETUP REQUIREMENTS

$\mathrm{GND}=0 \mathrm{~V}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$

SYMBOL	PARAMETER	WAVEFORM	LIMITS			UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \end{gathered}$		$\begin{gathered} \hline \mathrm{T}_{\mathrm{amb}}=-40 \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \\ \hline \text { MIN } \end{gathered}$	
			MIN	TYP		
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time $n A x$ to LEAB, $n B x$ to LEBA	3	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{gathered} -0.3 \\ 0.1 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time $n A x$ to LEAB, $n B x$ to LEBA	3	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{gathered} -0.1 \\ 0.1 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time $n A x$ to $\overline{E A B}, n B x$ to $E B A$	3	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{gathered} -0.1 \\ 0.2 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time $n A x$ to $E A B, n B x$ to EBA	3	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline-0.1 \\ & -0.1 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	Latch enable pulse width, Low	3	4.0	2.0	4.0	ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	MR Pulse width, Low	6	3.0	1.0	3.0	ns

16-bit latched transceiver with dual enable

AC WAVEFORMS

Waveform 1. Propagation Delay For Inverting Output

Waveform 2. Propagation Delay For Non-Inverting Output

Waveform 3. Data Setup and Hold Times and Latch Enable Pulse Width

Waveform 4. 3-State Output Enable Time to High Level and Output Disable Time from High Level

Waveform 5. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

Waveform 6. Master Reset Pulse Width, Master Reset to Output Delay

16-bit latched transceiver with dual enable

TEST CIRCUIT AND WAVEFORMS

DEFINITIONS

$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\text {OUT }}$ of

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	t_{W}	t_{R}	t_{F}
$74 \mathrm{ABT} / \mathrm{H} 16$	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

16-bit latched transceiver with dual enable

detail X
MSA406

Dimensions in mm.

16-bit latched transceiver with dual enable

MSA400

Dimensions in mm.

16-bit latched transceiver with dual enable

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support - These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors
811 East Arques Avenue
P.O. Box 3409

Sunnyvale, California 94088-3409
Telephone 800-234-7381

All rights reserved. Printed in U.S.A.
print code
Document order number:

Date of release: 05-96
9397-750-03497

Let's make things better.

PHILIPS

[^0]: H = High voltage leve
 $h=$ High voltage level one set-up time prior to the Low-to-High transition of nLEXX or $n E X X(X X=A B$ or $B A)$
 L = Low voltage level
 I = Low voltage level one set-up time prior to the Low-to-High transition of nLEXX or $n E X X(X X=A B$ or $B A)$
 X = Don't care
 $\uparrow=$ Low-to-High transition of nLEXX or nEXX $(X X=A B$ or $B A)$
 $\mathrm{NC}=$ No change
 $Z=$ High impedance or "off" state

